

Efficacy of PMX30063 in Experimental Staphylococcal Skin and Skin Structure Infection Models

M. E. PULSE¹, W. J. WEISS¹, P. NGUYEN¹, J. PIERCE¹, J. SIMECKA¹, R. W. SCOTT²
¹UNT Health Science Center, Ft. Worth, TX, ²PolyMedix Inc., Radnor, PA

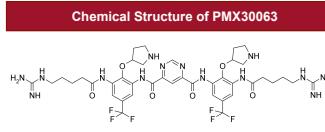
* Current institution:
 UNT Health Science Center
 3500 Camp Bowie Blvd.
 Fort Worth, TX 76107
 impulse@unt.edu
 www.unt.edu/hs/clinical

Abstract

Background: PMX30063 (PMX) is a synthetic small molecule mimetic of host defense proteins and is currently in clinical development. PMX possesses a novel mechanism of action, disrupting bacterial cell membranes and is highly active against both Gram+ and Gram- organisms. The current study was performed to evaluate the efficacy of PMX in the mouse subcutaneous abscess model (MSCA) and rat granuloma pouch (RGP) infection models. **Methods:** For the MSCA model, CD-1 mice were rendered passively immunized by IP administration of cyclophosphamide (150 mg/kg day -4). An *S. aureus* (Sa) culture was mixed with Cytolysin (205 CFU) and 0.2 mL injected SC into the flanks of each mouse. Treatment was initiated 2 hrs post-infection and continued either once (qd) or twice (bid) a day for 5 days. The number of live and dead bacteria were determined after the last administered dose. For the RGP, sterile pouches were formed on the backs of Sprague-Dawley rats by the injection of sterile oil + 1% croton oil. Pouches were allowed to form for 5 days after air exposure and infected w/ 10⁶ CFU of Sa. Treatment was initiated 2 hrs post-infection and continued either once (qd) or twice (bid) a day for 24 hrs for CFU determinations. **Results:** In the MSCA model, PMX demonstrated log CFU reductions of 1.3 – 2.3 for 4 dosing regimens (both qd and bid) between 10 - 20 mg/kg as compared to untreated controls. Vancomycin exhibited a 3.3 log reduction at 25 mg/kg IP. In the RGP model, PMX demonstrated log CFU reductions of 2.2 – 2.4 over 24 hrs following single IV doses of 4 – 20 mg/kg and a 5 log reduction at 10 mg/kg bid (twice a day of administration). Vancomycin at 50 mg/kg exhibited a 2.2 log reduction in the pouch fluid. **Conclusions:** PMX30063 demonstrated in vivo efficacy in two different rodent models of *S. aureus* skin structure infections and warrants further investigation for its utility in these and other clinically relevant infections.

Introduction

PolyMedix uses a proprietary computational de novo drug design platform to design biopharmaceutical small molecules that mimic the activity of certain proteins. The first products developed using the computational platform were novel small molecule antibiotic drugs which mimic the activity of host defense proteins. These are the first and only small molecule defense mimetics being developed intended for use in systemic infections. By mimicking the natural host defense proteins, PolyMedix compounds have a highly unique mechanism of action, directly targeting bacterial cell membranes, resulting in the disruption of the genetic machinery often responsible for bacterial resistance. Thus, it is unlikely that bacterial resistance can easily develop to these compounds. PMX-30063 has broad and potent antimicrobial activity against Gram-positive and Gram-negative bacteria, including antibiotic-resistant strains. Here we describe studies that evaluate PMX30063 efficacy in mouse subcutaneous abscess and rat granuloma pouch models infected with *Staphylococcus aureus* ATCC13709.

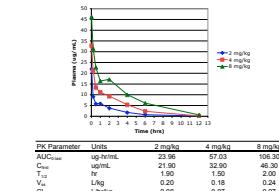

Methods and Materials

Bacteria: *Staphylococcus aureus* (ATCC13709) - methicillin-susceptible

Bacterium: *Staphylococcus aureus* (ATCC13709) - methicillin-susceptible. Female, 5 - 6 week old CD-1 mice were used in abscess studies and were rendered immunocompetent with a single intraperitoneal (IP) injection of cyclophosphamide (Cytolysin) at 150 mg/kg. The infection was a 1:10 dilution of a culture that was grown on appropriate agar media and suspended in tryptic soy broth (TSB) to an absorbance of 1.37 (600_{nm}). This suspension was diluted to the target CFU range in TSB (approx. 10⁶ CFU/mL), and then 4-fold diluted in 0.1 mL of TSB. The final dose of inocula was 205 CFU. The dose of inocula determined here to be a mean inocul of 1.25 x 10⁵ CFU/abscess for each study. Prior to infection, mice were anesthetized, shaved, and sterilized. While under anesthesia, mice were shaved and sterilized. The dorsal side of the mouse was shaved and sterilized. The inocula into 2 separate sites on the flanks of each animal. All treatments began 2 hours after infection, and compounds were either administered as a 0.1 mL intravenous (IV) injection (PMX-30063) or a 0.2 mL IP injection (Vancomycin). All treatments were continued for either twice a day (bid) or once a day (qd) for 5 days. The number of live and dead bacteria were determined after the final treatment, homogenized, and plated onto charcoal supplemented agar media for final CFU counts.

Rat Granuloma Pouch Model:

Sprague-Dawley rats were shaved and decontaminated on the dorsal side from shoulder to mid-back. Pouches were formed by SC injecting 30 mL of sterile air through a 25G needle, and then by injecting 0.5 mL of a 1% croton oil emulsion into the same site through the same needle. The pouches were left for 24 hours and pouches were infected 5 days following their removal with 0.1 mL of a 10⁶ CFU/mL suspension of *S. aureus* ATCC13709. All compounds were IV administered beginning 2 hours post-infection, and pouch fluid was sampled for each rat 0.5 – 24 hours post-treatment to determine CFU counts and compound concentration. Additionally, blood samples were collected from the same rats 1 minute to 8 hours post-treatment to determine comparable concentrations in plasma.

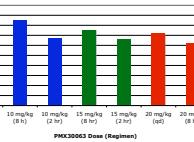


Mouse Subcutaneous Abscess and Rat Granuloma Pouch Models

Subcutaneous abscesses on the dorsal surface of CD-1 mice following subcutaneous injection of ATCC13709 with dextran (Cytolysin) beads.

Pharmacokinetics of PMX30063 in CD-1 Mice Following Intravenous Administration^a

PMX30063 exhibits dose dependent increase in plasma exposure (AUC) following IV administration in mice.


The elimination half-life, volume of distribution and clearance were consistent across the dose range from 2 - 8 mg/kg.

^a from Pharmacokinetic-Pharmacodynamic Relationships for PMX30063 in the Mouse Thigh Burden Model 2009 49th ICAAC, Poster F1-2014

Efficacy of PMX30063 in the Mouse Subcutaneous Abscess Model following Intravenous Administration

Compound	Dose (mg/kg)	Regimen	Geometric Mean Log ₁₀ CFU	SD	Mean Log reduction ^a
PMX30063	4	2x/day - 8 hr interval	8.94	0.19	-0.33
	10	2x/day - 8 hr interval	6.48	0.76	0.13
	10	2x/day - 2 hr interval	6.73	0.7	1.88
	15	2x/day - 8 hr interval	7.51	0.88	1.1
	15	2x/day - 2 hr interval	6.63	1.16	1.98
	20	1x/day	7.2	0.57	1.41
	20	2x/day - 8 hr interval	6.18	0.56	2.43

^a relative to infection (untreated) control at end of study

The infection control group achieved a bacterial density of 8.61 log₁₀ CFU. PMX30063 (8 hr dosing interval) demonstrated a dose response with mean log reductions of 0.33 to 2.43 over the dose range of 4 to 20 mg/kg.

PMX30063 administered at 10 or 15 mg/kg over a 2 hr dosing interval achieved greater efficacy (CFU reduction) than the same doses over an 8 hr interval.

In the rat granuloma pouch model, PMX30063 (4 - 20 mg/kg) reduced Log₁₀ CFU counts by as much as 2.2 - 4.9 at 8 hrs post-dose when compared to the corresponding infection control.

Regrowth/increase in Log₁₀ CFU from 4-6 hrs in the pouch was observed for PMX30063 when given as a single dose at 4, 10 and 20 mg/kg, but not when 10 mg/kg was given in two separate doses.

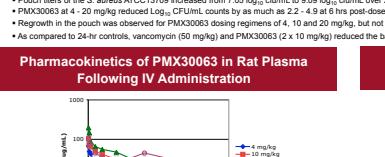
Vancomycin (50 mg/kg) and PMX30063 (2 x 10 mg/kg) reduced the bacterial pouch burden by 5.3 and 5.0 Log₁₀ CFU, respectively.

Pharmacokinetic analysis of the pouch fluid showed that PMX30063 achieves sustained levels in excess of 6 ug/ml from 4 through 24 hrs at doses of 20 mg/kg per day.

Based on total measured exposure (AUC₀₋₂₄), penetration of PMX30063 into the granuloma pouch fluid was 44 - 66%.

PMX30063 demonstrated in vivo efficacy in two different rodent models of *S. aureus* skin structure infections and warrants further investigation for its utility in these and other clinically relevant infections.

Summary and Conclusions

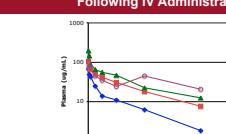

- PMX30063's unique mechanism of action, directly lysing bacterial cell membranes, results in the destruction of the genetic machinery often responsible for bacterial resistance.
- In the subcutaneous abscess model, PMX30063 (8 hr dosing interval) demonstrated a dose response with mean log reductions of -0.33 to 2.43 over the dose range of 4 to 20 mg/kg.
- PMX30063 administered at 10 or 15 mg/kg over a 2 hr dosing interval achieved greater efficacy (CFU reduction) than the same doses over an 8 hr interval.
- In the rat granuloma pouch model, PMX30063 (4 - 20 mg/kg) reduced Log₁₀ CFU counts by as much as 2.2 - 4.9 at 8 hrs post-dose when compared to the corresponding infection control.
- Regrowth/increase in Log₁₀ CFU from 4-6 hrs in the pouch was observed for PMX30063 when given as a single dose at 4, 10 and 20 mg/kg, but not when 10 mg/kg was given in two separate doses.
- Vancomycin (50 mg/kg) and PMX30063 (2 x 10 mg/kg) reduced the bacterial pouch burden by 5.3 and 5.0 Log₁₀ CFU, respectively.
- Pharmacokinetic analysis of the pouch fluid showed that PMX30063 achieves sustained levels in excess of 6 ug/ml from 4 through 24 hrs at doses of 20 mg/kg per day.
- Based on total measured exposure (AUC₀₋₂₄), penetration of PMX30063 into the granuloma pouch fluid was 44 - 66%.
- PMX30063 demonstrated in vivo efficacy in two different rodent models of *S. aureus* skin structure infections and warrants further investigation for its utility in these and other clinically relevant infections.

References

- 1) Barnes, C., L. Wheeler, G. Reed, J. Musser, and N. Barg. 1992. Murine model of cutaneous infection with gram-positive cocci. Infect. Immun. 60:2838-2840.
- 2) Ford, C. W., D. Hamel, D. Stepan, and R. J. Yancey. 1988. Establishment of an experimental model of a *Staphylococcus aureus* abscess in mice by the use of dextran and gelatin microcarriers. J. Med. Microbiol. 28:259-266.
- 3) Ford, C. W., J. C. Hwang, D. Stepan, and J. Yancey. 1987. Antibiotic susceptibility of *Staphylococcus aureus* isolated from dextran/gelatin microcarriers-induced subcutaneous abscesses in mice. Zbl. Bakt. Suppl. 16:247-257.
- 4) National Research Council. 1996. Guide for the Care and Use of Laboratory Animals. National Research Council.
- 5) Taubes, G. 2008. The bacteria fight back. Science. 312(18 July 2008): 356-361.
- 6) Scott, R., et al. In vitro and in vivo safety of a novel host defense protein mimetic, PMX30063. 48th ICAAC, Washington, DC.
- 7) Scott, R., et al. In vitro antimicrobial activity of a novel host defense protein mimetic, PMX30063. 49th ICAAC, Washington, DC.

Acknowledgments

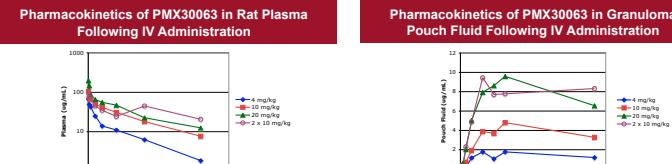
This study was funded and supported by PolyMedix Inc., Radnor, PA. The authors would like to acknowledge Yongjian Xu (PolyMedix) for the synthesis of PMX30063 and Yuri Khemelinsky (AMRI) for bioanalysis of the plasma and pouch samples.


* Pouch titers of the *S. aureus* ATCC13709 increased from 7.05 log₁₀ CFU/ml to 9.09 log₁₀ CFU/ml over 24 hours.

* PMX30063 at 4 - 20 mg/kg reduced Log₁₀ CFU/ml counts by as much as 2.2 - 4.9 at 8 hrs post-dose when compared to the corresponding infection control.

* Regrowth in the pouch was observed for PMX30063 dosing regimens of 4, 10 and 20 mg/kg, but not 2 x 10 mg/kg, by 24 hours.

* As compared to 24-hr controls, vancomycin (50 mg/kg) and PMX30063 (2 x 10 mg/kg) reduced the bacterial pouch burden by 5.3 and 5.0 Log₁₀ CFU/ml, compared, respectively. .


Pharmacokinetics of PMX30063 in Rat Plasma Following IV Administration

PMX30063 exhibits dose dependent increase in plasma exposure (AUC) following IV administration in mice.

The elimination half-life, volume of distribution and clearance were consistent across the dose range from 2 - 8 mg/kg.

^a from Pharmacokinetic-Pharmacodynamic Relationships for PMX30063 in the Mouse Thigh Burden Model 2009 49th ICAAC, Poster F1-2014

PMX30063 appears to penetrate into the granuloma pouch fluid

* The percent penetration (AUC₀₋₂₄, pouch / AUC₀₋₂₄, plasma) was calculated to be 44 - 66% over the dose range of 4 - 20 mg/kg.

^a from Pharmacokinetic-Pharmacodynamic Relationships for PMX30063 in the Mouse Thigh Burden Model 2009 49th ICAAC, Poster F1-2014